科学研究

马瑜婷

研究员、课题组长、

博士生导师(北京协和医学院)、

硕士生导师(南京医科大学、中国药科大学)

 

学术组织任职

·中国抗癌协会肿瘤代谢专业委员会  常务委员

·中国抗癌协会肿瘤微环境专业委员会  委员

·手术与细胞治疗学术委员会  常务委员

·中国免疫学会基础免疫分会  委员

·中国免疫学会青年工作委员会  委员

·中国细胞生物学会  永久会员

·法国免疫学会  会员

·欧洲肿瘤免疫学院  会员

 

学术期刊任职

·eLife审稿编辑

·Current Research Immunology编辑

 

邮箱:yuting_ma1984@163.com

 

个人主页:

https://www.researchgate.net/profile/Yuting_Ma

https://scholar.google.com/citations?user=wM9t-mIAAAAJ&hl=en

 

教育科研经历

2008-2011年  法国巴黎第十一大学,博士(免疫学)

2011-2013年  法国国家健康与医学研究院,博士后

2013-2015年  法国巴黎第五大学,博士后

2015-至今      苏州系统医学研究所,研究员

2018-至今      苏州系统医学研究所,免疫功能分析与检测平台主任

 

课题组研究方向

1.细胞应激(自噬、凋亡、程序性坏死、焦亡、内质网应激等)重塑肿瘤免疫微环境、调控抗肿瘤免疫应答的机制;

2.精神应激触发的神经内分泌-代谢-免疫-寄居微生物对话网络对肿瘤微环境的组成、微观特征、功能演变的影响及其动态调控规律,探索其对抗肿瘤免疫应答的调控机制。

 

课题组研究成果

基于系统医学的研究理念,着眼于从“应激与免疫调控”的全新视角,重点解析机体内外因素造成的多重应激(肿瘤治疗导致的细胞应激、肿瘤微环境导致的代谢应激、严重压力触发的精神应激等)对抗肿瘤免疫应答的多层次调控机制。

1.从细胞应激的角度:探索肿瘤发生与发展、放化疗或溶瘤病毒治疗所引发的多种细胞应激反应(自噬、凋亡、程序性坏死、焦亡、内质网应激等)对肿瘤细胞免疫原性(特别是危险信号分子、肿瘤新生抗原)的影响,以及对肿瘤微环境及全身抗肿瘤免疫应答的调控机制。特别关注细胞应激对单细胞转录组、表观遗传学修饰、脂质组与脂膜蛋白组、TCR/BCR免疫组库的影响。发现并验证增强肿瘤免疫原性、克服肿瘤异质性,打破免疫忽视、耐受、抑制性微环境的新型治疗靶点和策略,以及新型预测或预后相关的生物标志物。

Ma et al. Immunol Rev 2017

 

2.从精神应激的角度:系统性解析肿瘤发生、发展、治疗过程中,精神压力对神经内分泌调节环路、寄居微生物(特别是肠道菌群及病毒组)的组成及代谢的影响;神经内分泌介质、寄居微生物及其代谢产物对肿瘤局部及全身的抗肿瘤免疫应答的影响;系统性解析上述改变对治疗结局的影响。重点关注免疫系统对“应激特征性分子”保守特征的识别与应答的共性机制。探索可改善肿瘤抗原提呈及效应细胞活化(特别是DC及CTL功能)的新型治疗靶点;发现并验证可改善肠道及肿瘤内微生态平衡的益生菌、病毒株、及其关键结构组分及代谢产物(包括神经递质等),为后续转化医学研究及原研药物开发提供潜在新靶点。

 

 

Ma Y et al. Nat Rev Immunol 2020 (submitted, copyright preserved)

 

课题组成员 

马瑜婷博士,研究员

夏琳博士,助理研究员

张淑青博士,助理研究员

黎青青博士,助理研究员

陈锦锋,博士研究生

朱俊琳,博士研究生

金子奇,博士研究生

翟梦珂,硕士研究生

林泽杭,硕士研究生

黄恩厚,硕士研究生

段志敏,博士研究生(联合培养,前成员)

童建波,博士研究生(联合培养,前成员)

蒋艳玉,博士研究生(联合培养,前成员)

林上清,博士研究生(联合培养,前成员)

王丽玮,博士研究生(联合培养,前成员)

 

 

 

 

发表论文

Featured Articles among 48 publications (*Co-first author;co-corresponding author; IF, impact factor; citation number from Web of Science™)

 

  1.  Ma Y, Kroemer G. The cancer-immune dialogue in the context of mental stress. Nat Rev Immunol. 2020 (submitted)
  2. Yang H*, Xia L*, Chen J*, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, Fu L, Yang J, Pan Z, Yu K, He J, Morand E, Schlecht-Louf G, Krzysiek R, Zitvogel L, Kang B, Zhang Z, Leader A, Zhou P, Lanfumey L, Shi M, Kroemer G, Ma Y. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019 Sep;25(9):1428-1441.
  3. Ma Y, Yang H, Kroemer G. Endogenous and exogenous glucocorticoids abolish the efficacy of immune-dependent cancer therapies. Oncoimmunology. 2019 Oct 11;9(1):1673635.
  4. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018 Mar 23;359(6382):1366-1370
  5. Ma Y, Pitt JM, Li Q, Yang H. (2017) The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol Rev. 2017 Nov;280(1):194-206.
  6. Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L, Kroemer G. Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology 2017 Apr 17;6(4):e1299302.
  7. Vechelli E., Ma Y, Baracco E.E, Zitvogel L, Kroemer G. Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: formyl peptide receptor-1. Oncoimmunology 2016; 30;5(5):e1118600.
  8. Ma Y, Yang H, Pitt J.M., Kroemer G, Zitvogel L. Therapy-induced microenvironmental changes in cancer. J Mol Med (Berl), 2016; 94(5):497-508.
  9. Yang H*, Ma Y*, Chen G, Zhou H, Yamazaki T, Klein C, Vacchelli E, Pietrocola F, Souquere S, Sauvat A, Zitvogel L, Kepp O, Kroemer G. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016; 10;5(6):e1149673.
  10. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, Kroemer G. Improvement of immunogenic chemotherapy by STAT3 inhibition. Oncoimmunology 2015; Sep. DOI: 10.1080/2162402X.2015.1078061.
  11. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, Kroemer G. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res 2015; Sep 15;75(18):3812-22.
  12. Vacchelli E*, Ma Y*, Baracco EE, Sistigu A, Enot DP, Pietrocola F, Yang H, et al. Chemotherapy-induced anti-tumor immunity requires formyl peptide receptor 1. Science 2015 Oct 29. pii: aad0779.
  13. Ma Y, Mattarollo SR, Adjemian S, Yang H, Aymeric L, Hannani D, et al. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2014; 74:436-45. (Cover story)
  14. Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology 2014; 3:e27663.
  15. Ma Y*, Adjemian S*, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41.
  16. Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013; 39:211-27.
  17. Ma Y, Yamazaki T, Yang H, Kepp O, Galluzzi L, Zitvogel L, et al. Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. Oncoimmunology 2013; 2:e24786.
  18. Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncoimmunology 2013; 2:e24568.
  19. Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy 2013; 9:1624-5.
  20. Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L. Harnessing gammadelta T cells in anticancer immunotherapy. Trends Immunol 2012; 33:199-206.
  21. Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012; 4:143ra99.
  22. Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011; 208:491-503.
  23. Ma Y, Conforti R, Aymeric L, Locher C, Kepp O, Kroemer G, et al. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 2011; 30:71-82.
  24. Ma Y, Aymeric L, Locher C, Kroemer G, Zitvogel L. The dendritic cell-tumor cross-talk in cancer. Curr Opin Immunol 2011; 23:146-52.
  25. Michaud M*, Martins I*, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7.
  26. Conforti R*, Ma Y*, Morel Y, Paturel C, Terme M, Viaud S, et al. Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res 2010; 70:490-500.  
  27. Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 2010; 22:113-24.
  28. Ghiringhelli F*, Apetoh L*, Tesniere A*, Aymeric L*, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170-8.

 

Book chapter:

Ma Y, AUTOPHAGY: Cancer, Other Pathologies, Inflammation, Immunity, Infection and Aging, Chapter 13 Role of Autophagy in Cancer Therapy, 2016, Academic Press, Elsevier Publishing Company. (http://dx.doi.org/10.1016/B978-0-12-802937-4.00013-2)

 

Updated on Feb 24, 2020