个人信息


     杨衡

     研究员、博士生导师

     江苏省优秀青年基金获得者

     邮箱:yhmyt[AT]hotmail.com

     座机电话:0512-62871526

     个人主页: https://www.researchgate.net/profile/Heng_Yang/contributions

 

 

教育科研经历

2001年-2005年     华中科技大学 生物技术 学士学位

2005年-2008年     华中科技大学同济医学院 移植免疫 硕博连读

2008年-2012年     南巴黎十一大学 免疫学 博士学位

2012年-2016年     法国健康与卫生研究院INSERM U1138 博士后

2016年-2020年     苏州系统医学研究所 副研究员

2020年至今           苏州系统医学研究所 研究员

 

研究方向

主要从事肿瘤免疫和抗病毒免疫研究。

 

研究成果

 

1. 调节性T细胞上的抗肿瘤功能分子靶点寻找: 目前基于共刺激分子,如CTLA-4, PD-1设计的抗体类药物在肿瘤治疗上取得了突破性进展,但这类药物引起的自身免疫副作用在临床上不可忽视。我们从调节性T细胞表达谱出发,试图寻找既有抗肿瘤的效果同时又可以避免自身免疫病的副作用的靶标。通过对Treg microarray分析,我们找到了一个离子通道的靶点。在小鼠上特异性敲除这一离子通道可有效抑制肿瘤生长,同时没有系统性的自身免疫副作用。

2. 肿瘤细胞免疫原性的调控因子寻找: 激活抗肿瘤免疫应答不仅需要激活肿瘤患者免疫系统,同时还需要肿瘤细胞抗原能够被有效摄取和抗原提呈给树突状细胞并激活它。我们研究发现IL-6家族的反式作用因子Stat3能够有效抑制肿瘤细胞的Type I IFN 信号通路,从而抑制化疗的效果(Cancer research, 2015)。我们最新研究也发现:necroptosis是一种可以激活抗肿瘤免疫应答的细胞死亡方式。 Necroptosis关键激酶RIP3在肿瘤细胞上的敲除会抑制化疗激活的抗肿瘤免疫应答,影响抗肿瘤效果(Oncoimmunology, 2016)。

3. 抗病毒中和抗体开发:通过建立病毒抗原表位噬菌体文库,我们研究感染者血清抗体谱,通过功能验证找到可产生中和抗体的抗原表位,筛选出的抗原表位可用于疫苗开发。通过建立患者PBMC全抗体噬菌体文库,我们筛选出相应抗原表位的全人源化的抗体,通过功能验证,评估体内体外中和能力,看成药可能。

 

课题组成员


代表性论文


  1. Chen, Y., Cai, Q., Pan, C., Liu, W., Li, L., Liu, J., Gao, M., Li, X., Wang, L., Rao, Y., Yang, H., & Cheng, G. (2022). CDK2 Inhibition Enhances Antitumor Immunity by Increasing IFN Response to Endogenous Retroviruses. Cancer Immunology Research, 10(4). https://doi.org/10.1158/2326-6066.CIR-21-0806
  2. Pan, C., Cai, Q., Li, X., Li, L., Yang, L., Chen, Y., Liu, J., Liu, W., Gao, M., Sui, T., Wang, X., Fan, H., Ruan, J., Shi, Y., Chen, S., Cheng, L. S., Liu, J., Yang, H., & Cheng, G. (2022). Enhancing the HSV-1-mediated antitumor immune response by suppressing Bach1. Cellular and Molecular Immunology, 19(4). https://doi.org/10.1038/s41423-021-00824-3
  3. Yang, L., Chen, S., Zhao, Q., Pan, C., Peng, L., Han, Y., Li, L., Ruan, J., Xia, J., Yang, H., Xu, F., & Cheng, G. (2022). Histone deacetylase 3 contributes to the antiviral innate immunity of macrophages by interacting with FOXK1 to regulate STAT1/2 transcription. Cell Reports, 38(4). https://doi.org/10.1016/j.celrep.2022.110302
  4. Zu, S., Luo, D., Li, L., Ye, Q., Li, R.-T., Wang, Y., Gao, M., Yang, H., Deng, Y.-Q., & Cheng, G. (2021). Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Signal Transduction and Targeted Therapy, 6(1). https://doi.org/10.1038/s41392-021-00853-4
  5. Liu, W., Gao, M., Li, L., Chen, Y., Fan, H., Cai, Q., Shi, Y., Pan, C., Liu, J., Cheng, L. S., Yang, H., & Cheng, G. (2021). Homeoprotein SIX1 compromises antitumor immunity through TGF-β-mediated regulation of collagens. Cellular and Molecular Immunology, 18(12). https://doi.org/10.1038/s41423-021-00800-x
  6. Li, L., Shi, Y., Li, S., Liu, J., Zu, S., Xu, X., Gao, M., Sun, N., Pan, C., Peng, L., Yang, H., & Cheng, G. (2021). ADP-ribosyltransferase PARP11 suppresses Zika virus in synergy with PARP12. Cell and Bioscience, 11(1). https://doi.org/10.1186/s13578-021-00628-y
  7. Sui, T., Wang, X., Li, L., Liu, J., Qiao, N., Duan, L., Shi, M., Huang, J., Yang, H., & Cheng, G. (2021). GOLM1 suppresses autophagy-mediated anti-tumor immunity in hepatocellular carcinoma. Signal Transduction and Targeted Therapy, 6(1). https://doi.org/10.1038/s41392-021-00673-6
  8. Li, L., Gao, M., Li, J., Zu, S., Wang, Y., Chen, C., Wan, D., Duan, J., Aliyari, R., Wang, J., Zhang, J., Jin, Y., Huang, W., Jin, X., Shi, M., Wang, Y., Qin, C.-F., Yang, H., & Cheng, G. (2021). Methods to Identify Immunogenic Peptides in SARS-CoV-2 Spike and Protective Monoclonal Antibodies in COVID-19 Patients. Small Methods, 5(7). https://doi.org/10.1002/smtd.202100058
  9. Li, L., Li, J., Gao, M., Fan, H., Wang, Y., Xu, X., Chen, C., Liu, J., Kim, J., Aliyari, R., Zhang, J., Jin, Y., Li, X., Ma, F., Shi, M., Cheng, G., & Yang, H. (2021). Interleukin-8 as a Biomarker for Disease Prognosis of Coronavirus Disease-2019 Patients. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.602395
  10. Zu, S., Deng, Y.-Q., Zhou, C., Li, J., Li, L., Chen, Q., Li, X.-F., Zhao, H., Gold, S., He, J., Li, X., Zhang, C., Yang, H., Cheng, G., & Qin, C.-F. (2020). 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Research, 30(11). https://doi.org/10.1038/s41422-020-00398-1
  11. Yang, H., Xia, L., Chen, J., Zhang, S., Martin, V., Li, Q., Lin, S., Chen, J., Calmette, J., Lu, M., Fu, L., Yang, J., Pan, Z., Yu, K., He, J., Morand, E., Schlecht-Louf, G., Krzysiek, R., Zitvogel, L., … Ma, Y. (2019). Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nature Medicine, 25(9). https://doi.org/10.1038/s41591-019-0566-4
  12. Yang, H., Ma, Y., Chen, G., Zhou, H., Yamazaki, T., Klein, C., Pietrocola, F., Vacchelli, E., Souquere, S., Sauvat, A., Zitvogel, L., Kepp, O., & Kroemer, G. (2016). Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. OncoImmunology, 5(6). https://doi.org/10.1080/2162402X.2016.1149673
  13. Yang, H., Yamazaki, T., Pietrocola, F., Zhou, H., Zitvogel, L., Ma, Y., & Kroemer, G. (2015). STAT3 inhibition enhances the therapeutic efficacy of immunogenic chemotherapy by stimulating type 1 interferon production by cancer cells. Cancer Research, 75(18). https://doi.org/10.1158/0008-5472.CAN-15-1122